依法保护女性生育权益 “冷冻胚胎案”入选最高法典型案例******
光明网北京1月12日电 (记者 孙满桃)涉冷冻胚胎等相关民事纠纷处理,是司法实践中的前沿问题,也是社会高度关注的问题。
在民法典施行两周年之际,最高人民法院今日举行新闻发布会,发布第二批人民法院贯彻实施民法典典型案例。记者注意到,一起冷冻胚胎案,即“邹某玲诉某医院医疗服务合同纠纷案”入选。
这起案件,人民法院判决支持丧偶的邹某玲有权请求医院继续为其实施胚胎移植手术。
最高法认为,该案是依法保护女性生育权益的具体实践,体现了司法对妇女合法权益的有效维护,具有积极的导向意义。
2020年,邹某玲与丈夫陈某平因生育障碍问题,为实施试管婴儿辅助生育手术到被告湖南省某医院处进行助孕治疗,并于2020年10月1日签署了《助孕治疗情况及配子、胚胎处理知情同意书》等材料。因邹某玲的身体原因暂不宜实施胚胎移植手术,某医院对符合冷冻条件的4枚胚胎于当日进行冷冻保存。
2021年5月,陈某平死亡。后邹某玲要求被告继续为其实施胚胎移植手术,但某医院以不能够为单身妇女实施辅助生殖术为由拒绝。
法院生效裁判认为,有关行政规范性文件规定“禁止给单身妇女实施人类辅助生殖技术”的主要目的是为了防止单身妇女通过实施辅助生殖技术规避婚姻和家庭的责任,保障我国正常的家庭伦理秩序和风俗。但原告是否属于条文中的“单身妇女”需要结合规范目的及本案的案情综合看待。
“单身妇女”应当指未有配偶者到医院实施人类辅助生殖技术的情形,原告是已实施完胚胎培育后丧偶的妇女,与上述规定所指实施胚胎移植手术的单身妇女有本质区别。
目前对于丧偶妇女要求继续移植与丈夫已受精完成的胚胎进行生育,法律并无禁止性规定。原告欲继续实施人类辅助生殖,既是为了寄托对丈夫的哀思,也是为人母的责任与担当的体现,符合人之常情和社会公众一般认知,不违背公序良俗。因此判决湖南省某医院继续履行与原告的医疗服务合同。
最高法认为,该案是依照民法典和《妇女权益保障法》相关规定的精神,保护丧偶妇女辅助生育权益的典型案例。审理法院结合案情和《人类辅助生殖技术规范》《人类辅助生殖技术和人类精子库伦理原则》有关“禁止给单身妇女实施人类辅助生殖技术”的规范目的,依法认定本案原告丧偶后与上述规定中的“单身妇女”有本质不同,从而确认了“丧偶妇女”继续实施人类辅助生殖技术的正当性。
科学家成功合成铹的第14个同位素******
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。
近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。
此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。
不断进行探索,再次合成铹同位素
铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。
质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。
103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。
截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。
目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。
通过熔合反应,形成新的原子核
铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。
“仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。
在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。
“如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
拓展新的领域,推动超重核理论研究
由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。
此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。
研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。
“此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)
(文图:赵筱尘 巫邓炎)